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Abstract
The nature of spin freezing in geometrically frustrated icosahedral quasicrystals
Tb–Mg–Zn and Tb–Mg–Cd was studied by thermoremanent dc magnetization
(TRM) decay as a function of aging time and magnetic field. At low
temperatures the magnetization exhibits typical broken-ergodicity phenomena,
as characteristic of spin glasses (SGs). However, the observed linear
dependence of the TRM on the magnetic field in the low-field regime is
incompatible with the aging of a nonergodic system in an ultrametrically
organized free energy of a SG, but compatible with a single-global-
minimum free energy of a superparamagnet below the blocking temperature.
The Tb–Mg–Zn(Cd) quasicrystals are, from this point of view, different from
site-disordered SGs, but similar to geometrically frustrated pure (site-ordered)
systems, like the kagomé and pyrochlore antiferromagnets, which also exhibit
a superparamagnetic component in the magnetization below the spin freezing
temperature and clustering of spins. The Tb–Mg–Zn(Cd) quasicrystals show
features associated with both the site-disordered SGs and the superparamagnets.
This duality is not a specific feature of spins in a quasiperiodic structure, but
is found quite commonly in nonrandom (site-ordered) geometrically frustrated
magnetic systems.

1. Introduction

According to the standard definition, a spin glass (SG) system possesses two fundamental
properties [1]: (a) frustration (the interaction between spins is such that no configuration
can simultaneously satisfy all the bonds and minimize the energy at the same time) and
(b) randomness (the spins are positioned randomly in the sample). These two properties lead
to highly degenerate free-energy landscapes with a distribution of barriers between different
metastable states, resulting in broken ergodicity below a spin freezing temperature Tf . Typical
broken-ergodicity phenomena observed in SGs are:
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(i) a large difference between field-cooled (fc) and zero-field-cooled (zfc) magnetic
susceptibilities below Tf in small magnetic fields,

(ii) the zfc susceptibility exhibits a frequency-dependent cusp associated with a frequency-
dependent freezing temperature, Tf(ω),

(iii) there exists an ergodicity-breaking line in the magnetic field–temperature (H –T ) phase
diagram (the de Almeida–Thouless line),

(iv) the third-order nonlinear susceptibility χ3 shows a sharp anomaly in the vicinity of Tf and
(v) there exist slow relaxation (aging) effects in the dc magnetization with time constants

longer than any experimentally accessible timescale.

At Tf , the spin correlation length ξ becomes very large (ξ3 is the volume within which the
spins develop correlations), so that all the spins in principle participate in the collective SG
state. The spin systems involving frustration and randomness are known as ‘site-disordered’
SGs and their prototypes are canonical SGs (dilute magnetic alloys of noble metal host (Cu,
Ag, Au) and a magnetic impurity (Fe, Mn)).

It was discovered later that SG phases with similar broken-ergodicity properties also
develop in pure (i.e. site-ordered) systems [2–6] without quenched disorder. These are
geometrically frustrated antiferromagnets (AFMs) with kagomé and pyrochlore lattices, where
triangular or tetrahedral distribution of nearest-neighbour AFM-coupled spins frustrates an
ordered periodic system (here a small residual randomness in the lattice, such as oxygen
defects, is considered to add to the SG behaviour as well). These systems are known as
‘topological’ or ‘geometrically frustrated’ SGs. Many of their properties (zfc–fc magnetization
splitting, frequency-dependent Tf(ω), de Almeida–Thouless line, χ3 anomaly, slow relaxation
of magnetization below Tf ) closely resemble the situation in site-disordered SGs. However,
the important difference is the short correlation length ξ usually encountered in geometrically
frustrated SGs, where ξ is already nonzero at relatively high temperatures (compared to Tf )
and does not increase significantly with decreasing temperature. What really changes upon
cooling is the characteristic timescale of the fluctuating moments, which slow down and exhibit
a dramatic spin freezing below Tf . The short ξ demonstrates that spins form magnetic clusters.
The appropriateness of describing these systems as SGs depends on the coupling between
clusters. In the case of interacting clusters such a system may be viewed as a usual SG
with renormalized magnetic moments, whereas the system of noninteracting clusters would
be just a superparamagnet. Superparamagnetic (SP) clusters below the blocking temperature
TB exhibit very similar features to SGs, i.e. their ergodicity is broken on the experimental
timescale. Due to some anisotropy energy, the reorientation of a cluster by a magnetic field
may be ‘blocked’ over a macroscopic timescale. It is, therefore, many times more difficult to
discriminate between a true SG and a superparamagnet.

A new class of magnetic materials, where SG ordering was observed at low temperatures,
are magnetic quasicrystals (QCs), where spins are placed on a quasiperiodic lattice. SG
phenomena were observed experimentally in two kinds of magnetic QCs. The first are the
Al-based icosahedral i-Al–Pd–Mn and i-Al–Cu–Fe families, where the d electrons of the
transition-metal atoms represent the basic reorientable magnetic dipoles. In these systems only
a small amount of Mn (typically 1% of all Mn atoms) [7–9] and Fe (typically 10−4 of all Fe
atoms) [10] carry magnetic moments, the rest being nonmagnetic. It is also sometimes difficult
to classify these d moments as localized unambiguously. The second kind of magnetic QCs are
the rare-earth-containing QCs, where the f magnetic moments of the rare-earth (RE) atoms are
well localized and sizable. Currently there are only two members of this class, the icosahedral
i-RE–Mg–Zn [11] and i-RE–Mg–Cd [12, 13] families. The RE concentration in these samples
is large, about 10 at.%, and all the RE atoms are magnetic. Together with good localization of
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the f moments, this makes these systems ideally suitable to study the behaviour of spins in a
quasiperiodic structure. In the following, we concentrate on this class of magnetic QCs. The
purpose of this paper is to elaborate on the relationship between a quasiperiodic spin system
and three other classes of systems that exhibit similar spin freezing associated with broken
ergodicity and random ordering of spins: (i) the site-disordered SGs, (ii) the geometrically
frustrated (site-ordered) spin systems and (iii) the superparamagnets below the blocking
temperature. Though all these systems exhibit very similar broken-ergodicity properties, they
show differences in the most basic physical property—the free-energy landscape. The structure
of this landscape can be probed by thermoremanent magnetization (TRM) decay through its
dependence on the aging in a magnetic field, allowing us to discriminate between the above
different classes. We demonstrate that the RE-containing QCs closely resemble geometrically
frustrated periodic systems, whereas we found no magnetic features that could be considered
as specific to quasiperiodicity. A short account of this work was published recently in a brief
report [14].

2. The nature of spin freezing in magnetic QCs

In magnetic QCs, the basic interaction between spins is the indirect, conduction-electron-
mediated Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange interaction. This interaction
oscillates in space and can be either ferromagnetic or antiferromagnetic, depending on the
distance between spins. The aperiodic distribution of the RE–RE distances consequently
frustrates the spin system. Here it is important to note that the RE spins are not positioned
randomly in the structure, but occupy well-defined lattice sites [15], so that frustration
is of geometrical origin. The i-RE–Mg–Zn(Cd) QCs represent, therefore, geometrically
frustrated spin systems. In real samples inevitable phason and chemical (Zn and Mg) disorders
reintroduce some degree of randomness. However, it was reported [16] that real i-RE–Mg–
Zn samples could be grown to the best structural perfection, containing only a small amount
of phason disorder, so that these systems could be considered as a physical realization of a
topological glass. From this point of view, the situation is similar to the geometrically frustrated
AFMs, but with an important difference. The interaction between spins in the above AFMs
is the nearest-neighbour direct exchange, whereas in the i-RE–Mg–Zn(Cd), it is the RKKY
interaction.

Another important similarity of the i-RE–Mg–Zn(Cd) QCs to the geometrically frustrated
AFMs is the cluster structure of the spins. There are several features that indicate the presence
of magnetic clusters in i-RE–Mg–Zn(Cd). The most direct observation was reported for
i-Ho–Mg–Zn, where neutron scattering has detected novel short-range spin correlations [17],
described by a six-dimensional modulation vector. The remarkable issue is the fact that the
spin correlations terminate with a short correlation distance, ξ ≈ 1 nm. An almost identical
short-range spin cluster structure was also observed in i-Tb–Mg–Cd [18], even though its
atomic structure belongs to a fundamentally different type of icosahedral lattice (primitive
icosahedral or P type) compared to i-Ho–Mg–Zn (face-centred icosahedral or F type). Here it
is important to stress that, according to the current (incomplete) knowledge of the i-RE–Mg–
Zn(Cd) structure, it is not clear whether spin clusters develop within atomic clusters. A recent
report [19] suggests the absence of atomic clusters. An indirect observation of magnetic clusters
was also provided by the Vogel–Fulcher-law analysis of the frequency-dependent ac magnetic
susceptibility in i-Tb–Mg–Zn [20], where the Vogel–Fulcher temperature (T0 = 4.8 K, as
compared to the freezing temperature Tf = 5.8 K) is considered as a measure of the interaction
strengths between clusters in a SG. Similar features (short AFM correlations and Vogel–
Fulcher-law ac susceptibility) were reported also for the geometrically frustrated kagomé AFM
(H3O)Fe3(SO4)2(OH)6 [6] (where ξ ≈ 1.9 nm) and pyrochlore Tb2Mo2O7 [2].
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Magnetic clustering properties of a purely geometrically frustrated quasiperiodic system
were also predicted theoretically for some prototypical QC lattices. A study of Ising spins on
a one-dimensional Fibonacci chain [21] found a ground state with a hierarchical structure of
nested clusters, which underwent gradual paramagnetization in an external field with increasing
temperature. A complicated spin structure was also found for a two-dimensional Penrose
lattice [22]. Magnetic clustering thus seems to be an intrinsic feature of the geometrically
frustrated spin systems, either periodic or quasiperiodic.

The above considerations suggest that the i-RE–Mg–Zn(Cd) QCs are closely related to
other geometrically frustrated spin systems, whereas they are less similar to site-disordered
SGs. Therefore, the classification of them as SGs or superparamagnets (or a combination of
both) depends on the coupling strength between clusters. The experimental observations of
their magnetic properties [20, 23] show typical broken-ergodicity phenomena, such as the zfc–
fc magnetization splitting, frequency-dependent Tf(ω), ergodicity-breaking line in the H –T
diagram, a negative anomaly in χ3 and aging effects in the dc magnetization. The minimum in
χ3 is usually considered as particularly strong evidence of a thermodynamic phase transition to
a SG state. Its usual interpretation is that the spin fluctuations freeze at Tf critically with a power
law χ3 ≈ (T − Tf)

−γ and the correlation length ξ tends to infinity. However, in view of the
short correlation length observed in i-Ho–Mg–Zn and i-Tb–Mg–Cd, this interpretation needs
further consideration in the case of the i-RE–Mg–Zn(Cd) QCs. Another argument suggesting
a SP nature of spin freezing in the RE-containing QCs is the recently reported [14] linear (SP)
relation between the TRM and the field-cooling magnetic field, MTRM ∝ Hfc, in the i-Tb–
Mg–Zn. This behaviour is opposite to that expected for site-disordered SGs, where the TRM
amplitude (normalized to its fc magnetization value Mfc) should decrease for an increasing
field [24]. The above experimental results therefore do not allow us to make an unambiguous
classification of the i-RE–Mg–Zn(Cd) systems as SGs or superparamagnets. It is important to
stress that a SP component in the magnetization was found quite generally in the geometrically
frustrated AFMs. A good example is the kagomé AFM (H3O)Fe3(SO4)2(OH)6 [6], where the
progressive freezing of SP entities over a wide temperature range is manifested in a continuous
growth of the fc magnetization also below the zfc–fc splitting temperature Tf . A related
situation was observed in i-RE–Mg–Cd QCs [23]. There, the zfc–fc magnetization splitting
occurs at the temperature Tf1 (figure 1(a)), whereas short-range spin correlations (spin clusters)
already appear slightly above Tf1 , as shown by the neutron experiment [18]. However, the fc
magnetization continues to grow below Tf1 down to the temperature of another anomaly at
Tf2 , below which it becomes temperature-independent. The origin of the second anomaly
at Tf2 (that is almost H -independent [23]) is not clear at present, but it is straightforward to
associate the growth of the fc magnetization between Tf1 and Tf2 with a SP component in
the magnetization. In contrast, the fc magnetization below Tf was found to be temperature-
independent in the i-RE–Mg–Zn family [20] (figure 1(b)), as typical for site-disordered SGs.
Strong SP components were found also in other geometrically frustrated jarosite samples [25].
These samples also showed a divergenceof the nonlinear susceptibility χ3, normally associated
with a SG transition, which could not be properly explained.

3. Aging of a nonergodic spin system

The fundamental physical property that provides the basic difference between a SG and a
superparamagnet is the shape of the free-energy landscape in the phase space. For SGs,
the free-energy surface is highly degenerate, exhibiting many local and global minima
that are separated by a distribution of barriers. A SG structure of the free-energy
surface was theoretically predicted by Parisi [26] by the replica-symmetry solution of the
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(a)

(b)

Figure 1. The low-temperature fc and zfc dc magnetic susceptibilities of (a) Tb11MgCd in an
applied field of 10 Oe and (b) Tb9MgZn in 5 Oe. The curves are guides for the eye. Very similar
susceptibility data were first reported in [20] for i-Tb–Mg–Zn and [23] for i-Tb–Mg–Cd, but, for
completeness, we include the datasets of our investigated samples.

Sherrington–Kirkpatrick model. The Parisi solution generates a large number of pure states
characterized by an overlap function qαβ between any two spin states α and β; qαβ =
N−1 ∑

i mα
i mβ

i . Here mα
i is the thermal average magnetization at a site i in a state α and

N is the total number of spins (assumed here to be Ising-type). The self-overlap qαα is
the (temperature-dependent) Edwards–Anderson order parameter qEA, obeying the relation
−qEA(T ) � qαβ � qEA(T ). The number NS of metastable states or, equivalently, the number
of relative minima of the free energy can be computed from the Thouless–Anderson–Palmer
(TAP) equations [27]. Close to the glass temperature Tf , NS increases exponentially with
decreasing T [28] as NS = exp{(8/81)N(1 − T/Tf)

6}, so that the complexity of the free-
energy landscape in configuration space increases enormously as T is lowered. The structure
of the organization of the metastable states obeys the property called ultrametricity [29]:
any three states α, β and γ having mutual overlaps qαβ , qαγ and qβγ with at least two of
the three overlaps being equal and the third being larger than or equal to the other two. This
property can be translated mathematically into a hierarchical tree-like organization of the states
(figure 2), where, on lowering the temperature, each state α gives ‘birth’ to Nα new states,
providing a continuous ramification of the phase space. The states are separated by energy
barriers whose heights increase exponentially with decreasing temperature [30]. At a given
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ageing

Figure 2. Coarse-grained free-energy surface for the ultrametric organization of metastable states
in SGs. When the temperature is lowered (T2 < T1 < Tf), each valley subdivides into others. The
barriers between valleys ‘born’ from the same ancestor state are small, whereas they are increasingly
higher for states that have the closest common ancestor higher on the hierarchical tree (shown by
the dashed lines). Aging denotes jumping of the system over potential barriers during the waiting
time tw.

temperature, the energy barriers also increase exponentially with the Hamming distance [31]
dαβ = (qEA − qαβ)/2 between the states α and β, where dαβ measures the difference between
the two states (the more spins are flipped over from one state to another, the smaller their overlap
and the larger their Hamming distance). If the spin system is to reach internal equilibrium upon
cooling below Tf , all the barriers must be surmounted. However, the ultrametric organization of
states results in a wide distribution of energy barriers that induces a broad distribution of jump
times over the barriers, extending from microscopic times up to the age of the universe. The size
of the phase space and the height of the barriers thus prevent the spin system from reaching
thermal equilibrium during experimentally accessible timescales. Only a small portion of
phase space is explored during the experimental time window.

The free-energy surface of a superparamagnet is, on the other hand, much simpler. Unlike
SGs, where there are many degenerate minima in the free-energy surface, the free energy of
a superparamagnet in a magnetic field exhibits a single global minimum, corresponding to
the Zeeman energy, MSP H , of a Curie-type SP magnetization of the independent SP clusters
MSP = CSP H/T in an external field H . Due to cluster anisotropy energy, there are also some
smaller local side minima superimposed on the global minimum, into which the system of
clusters may be temporarily trapped below the blocking temperature TB on approaching the
global ground state.

The crucial experiment that probes the actual shape of the free-energy landscape in the
phase space is the observation of slow relaxation (aging) effects in the TRM time-decay [30, 24].
In this experiment (figure 3) one cools the sample in a field Hfc quickly from above Tf to a
measuring temperature Tm < Tf , where one lets the system age for a time tw. We discuss first



Spin freezing in icosahedral Tb–Mg–Zn and Tb–Mg–Cd quasicrystals 7987

Figure 3. Protocol for the TRM time-decay measurement. The sample is cooled in a field Hfc
quickly from above Tf to Tm. At Tm one waits a time tw before reducing the field Hfc to zero.
Following Hfc → 0, there is a rapid decay of the reversible part of the magnetization, followed by
a slow decay of the irreversible part (TRM) of the magnetization.

the aging scenario for the ultrametrically organized SG free energy. There, during waiting at
Tm, the spin system explores different metastable states within the phase space by jumping over
the barriers. The largest barrier �max surmounted during the waiting time (assuming thermally
activated motion) is Tm- and tw-dependent and given by �max(Tm, tw) = kBTm ln(tw/τ) (where
τ is a microscopic attempt time), so that �max limits the portion of phase space visited.
Ultrametricity requires that the barriers between states ‘born’ from the same ancestor in one
hierarchical step on the ultrametric tree are small (figure 2), whereas they become increasingly
higher for the states that have the closest common ancestor separated by increasingly more
steps of hierarchy [32, 30]. At the end of the waiting time tw, the field Hfc is cut to zero and the
magnetization time-decay is measured. Here two closely related processes occur [24]. First, a
new set of metastable states with zero magnetization replaces the set of metastable states with
magnetization Mfc as the ground state. Second, this causes a ‘tilt’ in the free-energy surface,
which rapidly empties those occupied states at Mfc with barriers less than or equal to the change
in the Zeeman energy, HfcMfc. This results in a rapid decay of a part of the magnetization
(called the reversible part) upon Hfc → 0. For longer times, a much slower process sets in.
This is the diffusion from occupied states with Mfc with barriers larger than the change in
the Zeeman energy, HfcMfc, towards the states with zero magnetization. The corresponding
magnetization part is called irreversible (TRM) and its decay is very slow, typically much
slower than any experimental observation time. The TRM decay depends strongly on the
aging time tw spent at Tm prior to cutting the field to zero as well as on the magnitude of the
field Hfc. Longer waiting times tw enable the system to jump over higher barriers, so that the
TRM amplitude becomes larger and its decay slower (the system has to jump back to states
with zero magnetization over the same barriers). The dependence of the TRM on Hfc is just the
opposite. The larger the cooling field Hfc (which should always be in the low-field region where
the zfc and fc magnetizations differ markedly), the smaller is the region of populated states in
the phase space bounded by barriers of height �(tw) > HfcMfc, so that a smaller irreversible
part (TRM) of the magnetization remains after Hfc → 0. The TRM amplitude (normalized to
Mfc) thus decreases with increasing field Hfc [23]. The above tw and Hfc dependences of the
TRM were indeed observed experimentally in several SG compounds [24, 30, 33].

From the theoretical side, no satisfactory description of the TRM exists at present. There
are several phenomenological approaches that describe the ultra-slow TRM time-decay. It was
suggested [34] that the decay law of any remanent magnetization (thermoremanent, isothermal



7988 J Dolinšek et al

remanent) is a logarithm of time, MRM(t) = constant − SRM ln t , where the coefficient SRM

is called the ‘magnetic viscosity’. In another study [35] it is argued that the ln t law is not
a valid description over many decades of time. Rather, the decay is more consistent with a
power law MRM(t) ∝ t−a(T,H ), where the exponent a(T, H ) depends on both temperature and
field. In still another approach [36], the remanent magnetization time-decay is described as
a fractional exponential decay with a stretched exponent α, MRM(t) ∝ exp(−constant × tα),
where 0 < α < 1. Regarding the H dependence of the TRM, there exists no theoretical model
apart from the qualitative picture given above.

The aging scenario for the case of a SP free-energy surface is different. In a fc run
at temperatures above the blocking temperature TB, the magnetization of SP clusters at any
temperature and field assumes its thermal equilibrium value M0

SP ∝ Hfc/T . On going below TB,
the reversible part of the magnetization still acquires its equilibrium value Mrev = Crev Hfc/T .
However, since below TB the thermal energy is ineffective in rapidly reorienting the cluster
magnetic moments, the total magnetization cannot reach the equilibrium state at a particular
temperature for a too fast cooling rate, but lags behind its thermal equilibrium value M0

SP.
Stopping the cooling run at Tm and letting the system age there for a time tw in a field Hfc, the
magnetization approaches its equilibrium value. The approach to equilibrium can be described
phenomenologically by a stretched-exponential function with the fc time constant τfc and a
stretched exponent α, so that the total magnetization at Tm and Hfc, as a function of tw, can be
written as [14]

M(Tm, Hfc, tw) = Mrev + M0
TRM[1 − e−(tw/τfc)

α

]. (1)

The difference M − Mrev = MTRM is the thermoremanent magnetization, which acquires its
equilibrium value M0

TRM = CTRM Hfc/T only for long waiting times tw → ∞. After cutting
Hfc to zero, the reversible magnetization decays to zero after a short time, whereas the TRM
decay is much slower and can be again described by a stretched-exponential function with time
constant τ0 and stretched exponentβ (the zero-field slow relaxation parameters may differ from
their fc values). For decay times t long enough that Mrev has already vanished completely, the
TRM time-decay may be written as4

M(Tm, Hfc = 0, tw, t) = M0
TRM[1 − e−(tw/τfc)

α

]e−(t/τ0)
β

. (2)

Equations (1) and (2) predict the following TRM dependence on tw and Hfc. For longer
aging times the TRM amplitude becomes larger and its time-decay slower (as increasingly less
reorientable clusters are participating in the process). This is exactly the same behaviour as
for a SG system in an ultrametrically organized free energy. The basic difference between
a superparamagnet and a SG is, however, provided by the field-dependence of the TRM
magnitude, which, in a superparamagnet, is proportional to M0

TRM ∝ Hfc. There thus exists a
linear (paramagnetic) relation, MTRM ∝ Hfc, between the TRM amplitude and the magnetic
field Hfc. By normalizing the TRM to the fc magnetization value Mfc at Tm, one should
obtain, for a superparamagnet, a MTRM/Mfc = constant line, independent of Hfc. For a SG, in
contrast, MTRM/Mfc �= constant, but decreases [24] for an increasing Hfc. It is, therefore, the
MTRM(Hfc) dependence, which can discriminate between a SG and a superparamagnet below
the blocking temperature.

4 In equation (2) we assume a stretched-exponential time-decay of the TRM. In another study [39], a theoretical TRM
decay in a superparamagnet due to flipping clusters was derived as a power law, MTRM ∝ t−aT . This is the same law
as that derived for a SG [35], but with an explicit temperature dependence of the coefficient a(T, H ) = a(H )T .
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4. Results

The TRM decay experiments, as a function of tw and Hfc, were performed on two samples, i-Tb–
Mg–Zn and i-Tb–Mg–Cd. The first sample, of nominal icosahedral composition Tb9Mg34Zn57

(in the following referred to as Tb9MgZn), was single-grain, grown by the self-flux technique
and its growth details are published elsewhere [16]. The sample exhibited clearly defined
pentagonal facets and dodecahedral morphology. It originated from the same source as the
samples used in the recent magnetic studies [20]. It should be noted that the i-RE–Mg–Zn
samples produced by the self-flux technique are claimed to be structurally exceptionally well
ordered [16]. Another advantage of using a self-flux grown single-grain i-Tb–Mg–Zn sample
is the absence of a closely related periodic rhombohedral r-Tb–Mg–Zn phase of approximate
composition Tb7Mg31Zn62 (quite close to the composition of the icosahedral phase), which
is often found in as-cast polygrain samples. The rhombohedral r-Tb–Mg–Zn undergoes at
14 K a magnetic transition with some ferromagnetic component [20], so that its precipitates
within the icosahedral i-Tb–Mg–Zn phase, even in small quantities, could severely obscure
the intrinsic magnetism of the icosahedral phase.

The Cd-containing sample, of nominal composition Tb11.6Mg35.2Cd53.2 (referred to as
Tb11MgCd), was prepared by a high-frequency induction melting method, followed by
annealing at 450 ◦C for 150 h. This sample originated from the same batch as those
used in the previous magnetic measurements [23]. Earlier growth investigations [12, 13]
show that the icosahedral phase in RE–Mg–Cd is usually contaminated by a crystalline
RE20Mgx Cd80−x (x ≈ 20). This crystalline phase contains a large amount of RE atoms
(about 20 at.%), and thus may possibly smear magnetic signals from the QC phase. In order
to avoid the ternary crystalline phase, the optimal RE concentration (about 15 at.%) for the
icosahedral composition was slightly reduced. The dominant phase is then the quasicrystalline
phase, with no ternary crystalline phase present, but a small amount of the Cd–Mg binary phase
appears [23]. This binary phase is nonmagnetic and, therefore, does not affect the magnetic
measurements. Our Tb11MgCd sample is thus a homogeneous mixture, composed not only
of the icosahedral quasicrystal, but also containing a little of a second phase, which shows no
magnetism. However, it should be kept in mind that even tiny amounts of the ternary crystalline
phase precipitates could influence the magnetic response of real i-Tb–Mg–Cd samples.

The TRM measurements were performed using two kinds of experimental setup. The
majority of measurements (those shown in figures 4(b), 5 and 6) were performed by a
commercial Quantum Design SQUID magnetometer, equipped with a 5 T superconducting
magnet and operating between 300 and 2 K. It is known that during field-cycling experiments,
the superconducting magnet can acquire a small nonzero remanent field, of about 1 Oe or
less, which can critically affect the low- and zero-field measurements in the case of TRM
time-decays. This field is removed by a standard calibration procedure, but in order to
check independently for the true zero-field measurements, some of the experiments (shown
in figure 4(a) and its inset) were conducted in a SQUID magnetometer using a solenoid
electromagnet coil, which did not suffer from the remanent-field problem (here, however,
the effect of the earth’s magnetic field had to be subtracted). No discrepancies were found
between the results obtained from the two setups.

In the TRM-decay experiments on the Tb9MgZn, the sample was rapidly field-cooled
from 25 K (cooling rate 5 K min−1) through the freezing temperature (Tf = 5.8 K) to a
variety of measuring temperatures (Tm1 = 4.8 K = 0.83Tf , Tm2 = 4.2 K = 0.72Tf and
Tm3 = 4.0 K = 0.69Tf ). In the first set of experiments (TRM as a function of tw) the sample
was cooled in a field Hfc = 125 Oe and left at Tm2 = 4.2 K for waiting times ranging from
tw = 1 min to 5 h. After cutting the field to zero, the magnetization decay curves (figure 4(a))
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(a)

(b)

Figure 4. (a) TRM time-decays of the fc magnetization (Hfc = 125 Oe) in icosahedral Tb9MgZn
at 4.2 K for different aging times ranging from 1 min to 5 h. Solid lines are stretched-exponential
fits with the fit parameters given in the table 1. The inset shows the tw dependence of the TRM
amplitude (normalized to the fc value) after a decay time of 120 min. The solid line is the fit to
equation (2). (b) TRM time-decays obtained for tw = 10 min and Hfc = 60 Oe at two temperatures:
7.0 K > Tf and 4.8 K < Tf . No measurable TRM is observed at 7.0 K = 1.2Tf .

were recorded inside the total experimental time of 120 min (these datasets have already been
shown in figure 2 of [14] in the linear t scale). The magnetization normalized to its fc value
Mfc could be well reproduced by a stretched-exponential function M/Mfc = exp{−(t/τ0)

β}.
The zero-field fit parameters—the attempt time τ0 and the stretched exponent β—are given
in the table 1. The obtained β values close to zero (ranging from β = 0.077 at tw = 1 min
to β = 0.037 at tw = 5 h) demonstrate the extremely slow TRM time-decay, which becomes
increasingly slower (β decreases) for longer tw. The magnitude of the TRM recorded after the
decay time of 120 min, as a function of tw, is displayed as an inset in figure 4(a). Following
the initial fast increase, M120(tw) exhibits a much slower increase for longer waiting times.
Here it can be seen that the TRM amplitude is small compared to the reversible magnetization
Mrev and for the longest waiting time tw = 5 h amounts to about 6% of the total magnetization
only. The fit (solid line) was made with the ansatz M120/Mfc ∝ 1 − exp{−(tw/τfc)

α}, with the
fc parameters τfc = 4.85 min and α = 0.403. The TRM dependences on the decay time t and
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(a)

(b)

Figure 5. (a) The TRM time-decays normalized to Mfc in Tb9MgZn for a set of Hfc values at 4.8 and
4.0 K. (b) The TRM amplitudes at the longest measured decay time (M110/Mfc at 4.8 K, M120/Mfc
at 4.2 K and M140/Mfc at 4.0 K) as a function of Hfc. The corresponding waiting times and Hfc
values are indicated in the graph. The horizontal lines represent the MTRM/Mfc = constant fits,
demonstrating the field-independence of this ratio. The 4.8 and 4.0 K curves were measured in a
superconducting magnet, whereas the 4.2 K curve was obtained in a solenoid electromagnet. Typical
canonical SG data of CuMn(6%) (Tm = 27 K = 0.86Tf , tw = 30 min, M10/Mfc), reproduced
from Chu et al [24], are displayed for comparison.

the waiting time tw are, therefore, consistently reproduced by equation (2). Both results—the
increase of the TRM amplitude and the slower TRM time-decay for longer tw—are consistent
with the aging scenario for a broken-ergodicity spin system. However, as discussed above, no
fundamental difference between a SG and a superparamagnet below TB is expected from this
point of view.

The existence of the TRM was searched for also at temperatures slightly above Tf . In
figure 4(b) we show the TRM time-decays obtained for tw = 10 min and Hfc = 60 Oe at two
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(a)

(b)

Figure 6. (a) The Mfc-normalized TRM time-decays in the Tb11MgCd at 8.0 and 4.0 K for a set
of Hfc (values indicated in the graph). The inset shows the TRM time-decays for tw = 10 min
and Hfc = 60 Oe at 18 K > Tf1 and 12 K < Tf1 with no measurable TRM at 18 K. (b) The TRM
amplitudes at the longest recorded decay time (M110/Mfc and M140/Mfc) as a function of Hfc. The
horizontal lines represent the MTRM/Mfc = constant fits.

temperatures: 7.0 K > Tf and 4.8 K < Tf . The important result is that no measurable TRM
could be detected at 7.0 K = 1.2Tf , thus just slightly above Tf . This demonstrates the absence
(within the accuracy of our detection) of spin clusters with broken ergodicity at 1.2Tf and
above, in contrast to many other SG systems, where ergodicity-breaking precursors may be
observed already at temperatures considerably higher than Tf (such as e.g. 2Tf ). Spin freezing
thus happens rather dramatically in a narrow temperature interval very close to Tf .

In the second series of experiments (Hfc dependence of the TRM), the cooling field was
varied between 125 Oe and 0. Three sets of the MTRM(Hfc) experiments were performed under
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Table 1. The zero-field TRM time-decay fit parameters—the attempt time τ0 and the stretched
exponent β—as a function of the waiting time tw for Tb9MgZn at 4.2 K and Hfc = 125 Oe.

tw τ0 (min) β

1 min 1.1 × 10−5 0.077
10 min 1.5 × 10−6 0.050
1 h 7.9 × 10−7 0.045
5 h 4 × 10−8 0.037

different experimental conditions: (i) Tm1 = 4.8 K, tw = 10 min, time-decays recorded up to
110 min (the associated TRM amplitude after 110 min is denoted as M110); (ii) Tm2 = 4.2 K,
tw = 1 h, time-decays up to 120 min (M120) and (iii) Tm3 = 4.0 K, tw = 30 min, time-decays up
to 140 min (M140). The TRM time-decays at 4.8 and 4.0 K, normalized to the fc magnetization,
are displayed in figure 5(a). The decay curves form separate groups, each group containing
curves of the same tw and Tm, but different Hfc values. The important result is that, within each
group, the curves coincide within the experimental error and do not exhibit any Hfc dependence.
The Hfc independence of the normalized TRM is nicely demonstrated in figure 5(b), where
the TRM amplitudes at the end of the decay time (i.e. M110/Mfc, M120/Mfc and M140/Mfc) are
displayed as a function of Hfc. All three normalized TRM amplitudes are horizontal constant
lines that do not depend on Hfc. As the fc magnetization is by itself linearly proportional to
the field, Mfc ∝ Hfc, this implies that the TRM also exhibits the same linear field-dependence,
MTRM ∝ Hfc, in order that their ratio MTRM/Mfc is Hfc-independent. There thus exists a
linear (paramagnetic) relation MTRM ∝ Hfc, which is consistent with equation (2) (recall that
M0

TRM ∝ Hfc). This relation is characteristic for superparamagnets and is not compatible with
the dynamics of a SG system in an ultrametrically organized free-energy landscape. There, the
MTRM/Mfc curve should be a decaying function with increasing Hfc. In figure 5(b) we display,
for comparison, a typical SG MTRM/Mfc versus Hfc curve. The SG data were taken from the
earlier work of Chu et al [24] on the canonical SG CuMn(6%) with Tf = 31.5 K. This TRM
experiment, reproduced in figure 5(b), was performed at Tm = 27 K = 0.86Tf for tw = 30 min
and the maximum measuring decay time was 10 min (so that M10/Mfc is displayed). The
decrease of the M10/Mfc with increasing Hfc is nicely observed and the authors of [24] give
a thorough explanation of this Hfc dependence in terms of the ultra-slow spin dynamics in an
ultrametric free energy. Regarding the TRM field-dependence, there thus exists an essential
difference between the canonical SGs and the icosahedral Tb9MgZn.

Identical TRM experiments were also conducted on the Tb11MgCd sample. This sample
exhibits the zfc–fc magnetization splitting at Tf1 = 12.5 K (figure 1(a)), whereas the second
anomaly (below which the fc magnetization becomes T -independent) occurs at Tf2 = 5.6 K.
The sample was field-cooled from 30 K through the freezing temperature Tf1 to a variety
of measuring temperatures: 12.0 K = 0.96Tf1 , 10.0 K = 0.80Tf1 , 8.0 K = 0.64Tf1 and
4.0 K = 0.32Tf1 = 0.71Tf2 , where this last temperature is also lower than Tf2 . The possible
existence of the TRM above Tf1 was first checked by recording the time-decays for tw = 10 min
and Hfc = 60 Oe at 18 K > Tf1 and 12 K < Tf1 (inset in figure 6(a)). It is seen that no
TRM could be detected at 18 K = 1.4Tf1 , similarly to the Tb9MgZn case. In measuring the
Hfc dependence of the TRM, four sets of experiments were conducted under the following
experimental conditions: (i) Tm1 = 12.0 K, tw = 10 min, time-decays recorded up to 110 min
(M110); (ii) Tm2 = 10.0 K, tw = 10 min (M110); (iii) Tm3 = 8.0 K, tw = 30 min (M140) and
(iv) Tm4 = 4.0 K, tw = 30 min (M140). In figure 6(a) the Mfc-normalized TRM time-decays at
8.0 and 4.0 K for a set of Hfc values are displayed, whereas in figure 6(b) the TRM amplitudes
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at the longest recorded decay time (i.e. M110/Mfc and M140/Mfc) are shown. The results
are qualitatively identical to those from figure 5 for Tb9MgZn, showing a Hfc-independent
MTRM/Mfc. Therefore, also in the Tb11MgCd, the TRM exhibits a linear (paramagnetic)
relation MTRM ∝ Hfc, consistent with the SP nature of spin freezing. This result is found for
all four measuring temperatures, thus not only for Tf2 < Tm < Tf1 , but also for the lowest one
(4.0 K), which is below Tf2 (where the fc magnetization is T independent). Hence, the linear
Hfc dependences of the TRM in Tb9MgZn and Tb11MgCd are fully consistent.

5. Discussion

The above experiments demonstrate the existence of a SP relation between the TRM and the
field, MTRM = χTRM Hfc. This points towards the conclusion that the i-Tb–Mg–Zn(Cd) QCs
should be viewed as a system of SP (noninteracting) clusters. However, based on the Tb–Mg–
Zn(Cd) structures, it seems unlikely that such clusters would be totally noninteracting. It is
more likely that weak coupling between clusters is present, so that the magnetization consists
of two components, a SP one and a SG one. This is also the situation commonly found in
other geometrically frustrated systems, such as the kagomé and pyrochlore AFMs. The weak
coupling between moments in the TbMgZn was also suggested in another magnetic study [37],
where the authors conclude that ‘magnetic ordering in these quasicrystalline alloys is not very
robust’. Therefore, in the absence of strong coupling between moments, the anisotropy energy
could play an important role in the ergodicity-breaking dynamics. One anisotropy that is always
present is due to dipolar interactions between the moments. A more important one seems to be
the anisotropy caused by the crystalline electric fields (CEF). It was shown [20], by comparing
the (Y1−x Tbx)–Mg–Zn and (Y1−x Gdx)–Mg–Zn series, that the freezing temperatures Tf of the
gadolinium compounds are systematically lower by a factor of about two (e.g. for x = 0.50,
Tf of the Tb compound is 3.4 K, whereas it is 2.2 K for the Gd compound). This difference
in Tf may be explained by the CEF, which do not affect the Gd3+ ions due to their zero orbital
angular momentum (L = 0), whereas they influence other RE atoms (L �= 0). This implies that
both the aperiodicity of the RE–RE distances and the local CEF anisotropy contribute (almost
equally) to the value of Tf . Additional evidence for significant CEF effects in Tb–Mg–Zn
was given by the muon spin-rotation experiment [38]. In Tb–Mg–Cd, on the other hand, CEF
anisotropy seems to be much smaller, as there is no significant difference between the freezing
temperatures [23] of the Tb–Mg–Cd (Tf1 = 12.5 K) and the Gd–Mg–Cd Tf1 = 13.0 K. Here,
however, it should be kept in mind that CEF provide single-ion anisotropies and not cluster
anisotropies. In addition, since the point symmetry of the RE sites is as yet unknown, we do
not know the nature of the anisotropy (e.g. whether the sites are Ising, X–Y or some more
complex type).

6. Conclusions

Icosahedral i-RE–Mg–Zn(Cd) QCs belong to the class of geometrically frustrated magnetic
systems. Earlier observations of typical broken-ergodicity phenomena suggested that these
systems could be similar to canonical (site-disordered) SGs. However, broken-ergodicity
phenomena are characteristic also for superparamagnets below the blocking temperature and
are not conclusive evidence for a SG state. Strong SP magnetization components with broken-
ergodicity properties (including the not-well-understood χ3 anomaly) were also observed
in pure (site-ordered) systems, the geometrically frustrated AFMs, where spin correlations
develop within rather small magnetic clusters. The i-RE–Mg–Zn(Cd) QCs share properties
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with other geometrically frustrated spin systems—they exhibit similar spin clustering and
ergodicity-breaking features. The key feature that discriminates a SG from a superparamagnet
below TB is the free-energy landscape in the phase space. The results of TRM experiments
on i-Tb–Mg–Zn(Cd) are incompatible with an ultrametrically organized SG free energy, but
compatible with a SP free energy. Therefore, the i-RE–Mg–Zn(Cd) QCs should not be
considered as SGs in the canonical (site-disordered) sense. Our main experimental result,
the linear (paramagnetic) relation between the TRM and the Hfc in low fields, suggests a
simple superparamagnet, but, based on the Tb–Mg–Zn(Cd) structure, it seems unlikely that
cluster units would be totally noninteracting. A weak coupling of clusters cannot be excluded
and, therefore, it seems more appropriate to classify the i-RE–Mg–Zn(Cd) QCs somewhere
between canonical SGs and superparamagnets, having features associated with each. As stated
before, this duality is not a specific feature of quasiperiodicity, but is found quite commonly
in geometrically frustrated magnetic systems without quenched disorder.
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